
Advanced Programming in Expect:
Prompt Your Prompts

by David L. Fisher
©Copyright 2013, All Rights Reserved
http://linuxgazette.net/2013/01/advanced-programming-in-expect-prompt-your-prompts
http://dlf.cotse.net/papers/Pompt_Your_Prompts.pdf

The critical aspect of the command prompt is to ensure that an automated system is in sync with the remote
process it is controlling. A command prompt is meant to indicate that there is a process waiting for
commands or other inputs. Duh. Accurate prompt detection becomes very important to the reliability of an
automated system because without knowing whether or not you have captured the most recent prompt and
the remote process is actually waiting for input, your system might wind up sending data to a system in an
unknown state, a condition likely to cause failures and errors and possible even exceptional exits. Typically
the cause of losing sync with the current prompt is that the prompt captured is the one before the command
was issued – this results in an automated system thinking it has received the output of a completed
command and the remote session is ready for the next command.

Maintaining Synchronization With Remote Session Prompts

This article will thoroughly address the issue of prompt detection regardless of the factors that may confound
ordinary prompt detection and verification, and allow automation developers to focus on other tasks instead
of debugging what can be an intermittent error. For those of you who intend on working with the code, I
can’t emphasize this enough: always wear eye protection.

Can You Control The Prompt?

Once common mistake developers make is to use a generic regular expression using common characters
used as the last non-space character of the prompt, and anchoring the expression. For example, consider
this prompt (and note the lack of escape characters within braces:

{[\r\n]?[^\r\n]+[%#>$] $}

This is the same expression in quotes, with which we'll need to be familiar, since the braces will prevent
shell evaluation of the variables we want to use within the expression, so shown below are the escape
characters in place:

“\[\r\n]?\[^\r\n]+\[%#>\$] \$”

This defines a string where there may be a line break, then a string which terminates in a common prompt
character and a space, and that space must be the last character. This is a reasonable definition and works
in most cases, until it stops working.

Besides the fact that prompts may be set to something that does not adhere to the standard prompt
expression, there are also instances in which you may thing you got the prompt, but instead matched
something within the incoming data. Even on very fast connections, if you enable diagnostics and watch
Expect’s internal matching attempts, you may see that it is processing one character at a time, and you can
watch the input buffer grow until a match is made. When dealing with cell modems and other slow
connections, it is possible (I know from personal experience) that the data may appear to stop and the last
part if it may match the above expression. Your expect clause will exit, thinking it has captured the next
command prompt, when in fact your system should still be iterating the expect clause and waiting for the real
prompt.

The above condition is even possible no matter how much you can control the prompt, and you may also
have to deal with systems that don’t allow you to set the prompt.

In situations where the prompt itself is part of the returned data (such as if you printenv on the remote
system), and you are able to control the prompt output, there is one trick that will help many of the subtle

http://dlf.cotse.net/papers/Pompt_Your_Prompts.pdf
http://linuxgazette.net/2013/01/advanced-programming-in-expect-prompt-your-prompts

mistakes that prompt expressions cause. By setting the command prompt to include the command number
of the command you just executed, you can expect a prompt with a number one higher than that number.
For example, in csh, adding the parameter “%h” will output the command history number. You can then
set your expected clause to include a number two higher (see below) as the next command prompt, and
avoid the confusion of seeing the last prompt. The actual arguments you would use in your prompt settings,
and how you would choose to get this number (either by regular expression to capture it or using the history
command) is up to you.

The following section applies to handling basic command shells like bash, sh, csh, etc. The section after that
applies to any prompting at all.

A Solution for Spawned Shells

For sessions which invoke something beyond just shell commands, we can’t rely on this solution unless we
want to specify the prompt we expect. For example, the history number would not show if you were to invoke
any program that prompts (like telnet).

I use csh when I spawn sessions, so the following example will only work for csh/tcsh users, and I’ve
added other interesting data (the %h in the prompt setting is the command number in the shell’s history,
and it increments every time a command is executed but not when blank lines or carriage returns are sent):

set prompt = “\[%h\]$USER@${HOST}:`pwd`> +“

This will result in a prompt that looks something like this:

[223]root@cyborg:/usr/local/etc>

Before we issue the command from whice we’re expecting some output, we should know what the history
number will be of the next prompt. A simple shell command will suffice:

set number = `history | tail -1 | awk '{print $1}'`

This is the command number of the command we are going to send, and incrementing it by one will give us
the command number that we expect to see in the next command prompt:

“\[\r\n]?\\[$number\\]\[^\r\n]\+[%#>\$] $”

The above expression assumes that “number” is the calculated value of the next command prompt to
expect. This solution should be elegant enough to stand the test of time, but only when dealing with systems
where you can set the prompt to include history numbers. An alternative would be to use unique numbers
and set the prompt every time before sending the command, and then using that unique number to
determine whether it is the same as the one you sent the command to – if so, your expect clause should
continue executing. In TCL8.4, you could use “clock clicks -milliseconds” to get the number, but
this command has been deprecated and in TCL8.5 beta the command would be “clock -milliseconds”.

Following is an example in TCL to send a command and make sure your expect clause doesn’t exit earlier
than it should.

Is This Really The Prompt I’ve Been Expecting?

Suppose you are unable to create a unique expression for each time you are waiting for the next command
prompt. This is where it gets annoying and when automated systems get derailed.

If we’re reasonably sure we’ve captured the most recent prompt and the remote process is actually
prompting for more commands, we may want to make sure. If we couldn’t do enough with the prompt to be
reasonably sure it’s the most recent, then we really want to make sure. If we don’t even know what the
prompt is, then we have to find out and verify it. Like most philosophies about handling multiple remote
command sessions, we often hit the return key once or twice to make sure the system is still responsive –
after we’ve determined that the system isn’t waiting for an answer to a question. If it’s waiting for an answer,
and especially if it provides a default if you simply hit the enter key, then this strategy won’t work. Therefore,

besides just detecting command prompts, we must have something to determine whether we’re being asked
a question instead.

The following example is for optionally discovering and definitely determining what the current prompt is. It
is a re-entrant procedure for discovery, and only runs once for verification.

proc check_prompt { id {prompt ""} {wait 0} {timeout 1} } {
 ## we have to determine the prompt, and we may have to wait first
 after $wait;
 ## find out if the session is responsive
 exp_send -i $id "\n";
 ## process what we get back as a response
 if { "$prompt" != "" } {
 ## we are looking for a particular prompt to verify
 ## this can be changed to allow flexibility if needed
 expect {
 -i $id
 -t $timeout
 -exact "($prompt)$" {
 ## partial or complete prompt matched with anchors
 return $expect_out(1,string);
 }
 timeout {
 error "Timeout checking prompt against $prompt";
 }
 }
 } else {
 ## use a fairly well-crafted regular expression to find a prompt, and
 ## then re-enter this procedure with a verification request
 expect {
 -i $id
 -t $timeout
 -re {your-(well-crafted-expression)} {
 ## you may not feel the need to verify this one
 return $expect_out(1,string);
 }
 -re "\[\r\n](\[^\r\n\]+\[%#>>\$] ?)$" {
 ## verify the suspected prompt
 return [check_prompt $id $n $expect_out(1,string)];
 }
 timeout {
 error "Timeout checking prompt";
 return "UNKNOWN";
 }
 }
}

Note the first argument is the spawn_id – Expect programmers should get used to passing this variable if
they are handling multiple spawned sessions in the same procedures.

If this procedure is called with just the spawn_id, it will attempt to determine the current prompt and then
call itself with the prompt on the command line to verify it, and then return the prompt or throw an exception.
If this procedure is called with both the spawn_id and the n parameter (the next history command number),
the we can more precisely define an expression that should exactly match the command prompt we’re
expecting. If this procedure is called with a prompt argument, it will either return the very same prompt or
throw an exception.

But Wait – There’s More

So you don't forget, order before midnight tonight! The solutions presented above have proven to be
invaluable in keeping an automated system in sync with a remote command prompt, and ultimately preserve
a sense of high confidence in the results produced by any automated system. There are still some instances
where even more is required, but this article just covers the basics – hopefully you'll be able to create your
own more esoteric solutions. Sometimes a threaded program will return to the command prompt while one

or more of the threads have not yet completed, and when they do, they will report to the same
stdout/stderr that the original program had.

	Advanced Programming in Expect:
	Prompt Your Prompts
	Maintaining Synchronization With Remote Session Prompts
	Can You Control The Prompt?
	A Solution for Spawned Shells
	Is This Really The Prompt I’ve Been Expecting?
	But Wait – There’s More

